阅读设置 (推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第1章 序章(2 / 2)

德瑞给王太子漏题了吧毕竟王太子表现得太过妖异,要知道,莱布尼兹这种超级神童也要4岁才开始念大学。

他当即取来纸笔,刷刷写下几行字,递到约瑟夫面前道:

“殿下,剩下的不用做了,只要完成这几题,我就算您通过。”

吊梢眼少年见状暗自冷笑:呵,拉格朗日这是看他不会做,要放水吗攀附王室的蠢货!等下得设法让大家看看王太子的考卷,让他好好出丑。

约瑟夫诧异地朝纸上看去,只有5道题,难度没变,题量减少。好事情。

他快速做完前两题,只见第三题是“请写出罗尔定理的证明过程”,这他很熟悉了,不假思索地在空白处写下:

罗尔定理,令f在闭区间[a,b]上连续,在开区间(a,b)内连续,假如f=f,则在开区间(a,b)内至少有一点使它的导函数的值为零。

证明:因为函数f在[a,b]内连续,所以闭区间内取得的最大值(m)最小值(m)……

约瑟夫三两下写完,却忽觉旁边的拉格朗日呼吸急促起来,忙抬头看去,就见老数学家神色激动,盯着考卷的样子如同见到了初恋。

约瑟夫立刻低头扫了一遍题目,迟疑道:“我应该没写错吧”

拉格朗日一把抓起考卷,仔细看了几遍证明过程,口中喃喃:“原来在可微函数上也是成立的!我怎么没想到”

他又看向了约瑟夫,目光炙热如火:“殿下,您是怎么想到的”

“啊不就是……”约瑟夫猛然想起来,罗尔只是简单证明了在多项式方程的两个相邻的实根之间,方程至少有一个根,直到十九世纪才有人将其推广到可微函数范畴。

大意了,没有闪……

“咳!”他忙拿回试卷,转移话题,“拉格朗日先生,我要做后面两题了。”

上一页 目录 +书签 下一章