”的小元老过来学习这些课程。这使冯诺突然发现,他长期窝在机房里面,接触的归化民太少了。而自己也是“博士”,这样的水平在以后穿越帝国里起码也得有三四个学派是用自己的名字命名的,要是没有传承就太可惜了。 于是他想到了钱羽之和李加奈这两个刚毕业的少年少女,虽然出身差点——一个职业学校,一个文理学院,可毕竟已经是本时空难得的正规教育培养出来的人才,就起了教两个徒弟的心思。 两个人的年龄不大,应该还有可塑造的余地,而且李加奈颇有悟性,可以往软件理论方面培养;钱羽之也还算勤奋,说不定能学学系统结构和应用技术方面的东西。他让冯珊抽空给两个人补习一些高小和中学的课程,自己给冯珊讲课的时候也尽量让他们旁听,只是冯诺心里清楚,离散数学对他们来说还早得很,多半是对牛弹琴。 事实与冯诺的估计相去不远。李加奈听了这节课后,感觉自己的脑子十分混乱。 现在她和钱羽之也已经改叫冯诺“老师”了。冯诺还说等过了年和天地会商量看看能不能把他们都正式调过来。钱羽之还有点懵懂,不知道这其中的奥妙,李加奈却知道这是绝好的机会。 调到首长身边,成为首长的“学生”,这种地位算是给首长当“生活秘书”之外最好的前途了! 然而听了好几节课,她就明白这学生不是那么好当的。而现在老师给他们单独上的课,就是所谓的“不一样的数学”。 这数学确实很奇怪,它并不怎么计算。一节课下来,黑板上全是奇怪的涂鸦。冯珊学姐说,那些像拼音一样的字符,叫拉丁字母,只是没有音调;其它一些鬼画符一样的字符,叫希腊字母;此外还有许许多多没见过的符号。 这也罢了,开始的时候内容似乎还是能够理解的,甚至并不用到她觉得有点难的小数、分数和多位数乘除法。有一次老师一本正经地讲到,13个人中至少有两个人是同一月份出生的,她还差点笑了出来,这也叫数学? 可是之后,老师马上布置了一道作业:“101个伏波军士兵站成一排,则可以使其中至少11个士兵向前走一步站成一个按身高从小到大的队列,或形成一个按身高从大到小的队列。” 她立刻蒙了,根本不知怎么去想这个问题,好在冯珊学姐也没解出来,更不消说钱羽之那个呆瓜。他们一起看着老师,老师却只用了几分钟时间就证明了这个命题。事后,李加奈花了1个小时来看记下来的笔记,才算弄明白了证明过程。 还有一次,老师讲一张伪明的地图最多用5种颜色就可以区分所有的布政使司,并且干净利落地证明了。在他们几个崇敬的目光中,冯元老似乎有些得意忘形,扬言其实他还可以证明用4种颜色就能画,只是这块黑板太小了,写不下。 然而最近,老师讲的东西却越发离谱了,她在上课的时候只觉云山雾罩,下了课记不起多少东西。这节课,她只依稀记得老师在讲什么理发师给不给自己理发的事。好像还说自然数集合是个无穷可数集,开玩笑,既然无穷,怎么又可数呢?培训班的指导员讲过,元老院的力量是无穷的,有的学员问什么是无穷,指导员回答说,无穷就是没有尽头、数不清。老师还胡扯什么自然数和整数一样多。上过初小的人就知道,整数明明就比自然数要多许多负数嘛! --------------------------------- 下次更新:第七卷-两广攻略篇54